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ABSTRACT 

In this contribution, the preparation of data for training deep learning networks that are used to segment the lower 
jawbone in computed tomography (CT) images is proposed. To train a neural network, we had initially only ten CT 
datasets of the head-neck region with a diverse number of image slices from the clinical routine of a maxillofacial 
surgery department. In these cases, facial surgeons segmented the lower jawbone in each image slice to generate the 
ground truth for the segmentation task. Since the number of present images was deemed insufficient to train a deep 
neural network efficiently, the data was augmented with geometric transformations and added noise. Flipping, rotating 
and scaling images as well as the addition of various noise types (uniform, Gaussian and salt-and-pepper) were 
connected within a global macro module under MeVisLab. Our macro module can prepare the data for general deep 
learning data in an automatic and flexible way. Augmentation methods for segmentation tasks can easily be 
incorporated. 

Keywords: Data Augmentation, Lower Jawbone, MeVisLab, Deep Learning, Medical Image Segmentation, Computed 

Tomography (CT). 

1. DESCRIPTION OF PURPOSE 

Segmentation is an important branch in medical image processing and the basis for further detailed investigations on 
computed tomography (CT), magnetic resonance imaging (MRI), X-ray, ultrasound (US) or nuclear images [1]-[8]. 
Through segmentation, an image is divided into various connected areas that correspond to certain tissue types. A 
common aim is to delineate healthy and pathologic tissues. A frequent example in medicine is the identification of a 
tumor or pathological lesion and its volume to evaluate treatment planning and outcome [9]-[15]. In the clinical routine, 
segmentation is necessary for the planning of specific treatment tasks [16]-[20], that are for example used in the 
radiation therapy or for the creation of three-dimensional (3D) visualizations and models to simulate a surgical 
procedure [21]-[23]. Segmentation can be classified into several families of techniques, such as thresholding [24], region 
growing, watershed [25], edge-based approaches, active contours [26] and model-based algorithms [27]. Recently, deep 
learning using neural networks is becoming important for automatic segmentation applications [28], [29]. 

Neural networks are constructed of neurons that are organized into input layers, output layers, and hidden layers, 
which are located between the input and output layers. Neural networks with a large number of layers are known as deep 
networks. The neurons are connected via weights, which can be trained with a training dataset to solve specific 
problems. For efficient training, neural networks require large amounts of training data [30], [31]. However, there is a 
lack of medical images that can be used as training data, because a ground truth data set has to be generated in advance 
by a physician through the manual segmentation of each slice. Moreover, medical images from the clinical routine need 
approval for research usage and must be anonymized, which may be a limiting factor. 

An opportunity to generate more training data from a small set of original images is data augmentation [30]-[33]: The 
original images are, for instance, geometrically transformed; random noise is added, or the resolution is changed. 
Augmentation is a common method in deep learning research [34], [35], [36]. 

To train deep learning networks for lower jawbone (mandible) segmentation, we used anonymized CT datasets from 
ten patients of the complete head and neck region. All CT data acquisitions have been performed in the clinical routine 
for diagnostic reasons at a maxillofacial surgery department at our disposal. Each mandible of these CT images was 
segmented by two specialized doctors manually (slice-by-slice in axial direction) to generate the ground truth contours 
for the segmentation task. To increase this rather small number of images, we resorted to data augmentation using the 
image processing platform MeVisLab (http://www.mevislab.de/download/). The segmentation contours were initially 
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exported as contour segmentation objects (CSO) and voxelized for training a neural network. The single transverse slices 
of the segmentation mask that covered the mandibular and the corresponding original slices were saved separately. 

2. METHODS 

All implementations of this work were accomplished with the MeVisLab platform [37]-[42]. MeVisLab is a medical 
image processing software with a graphical user interface. Besides, it provides built-in modules for basic image 
processing operations, such as low-pass filtering. These modules can be connected to form image processing networks 
[43]-[49]. 

We developed a MeVisLab module network (Figure 1) that converts segmentation contours into ground truth images 
and a depiction of the patients' CT images. In addition, a MeVisLab macro module was created, which saves image data 
as separate and, optionally, modified slices. 

At the lower section of the network is the Load Data module group (green box in Figure 1) to import the patient's CT 
dataset and the segmentation contours of the lower jawbone into the MeVisLab environment. The CSOConvertToImage 
module (orange box in Figure 1) converts a CSO into a voxelized ground truth binary mask (Figure 2). The modules at 
the top of Figure 1 display the CT images and masks.  

In addition, we developed a SaveAsSingleSlices (red box in Figure 1) macro-module, which allows storing all slices 
of one image data stack as separate TIFF or PNG files automatically. In addition, our macro-module is able to export 
selected slices and to augment the dataset with geometric transformations and noise. Geometric transformations may use 
any combination of rotation, scaling and mirroring, while noise can be of the uniform, Gaussian or salt-and-pepper 
variety. All parameters can be interactive specified in a custom user interface panel. 

 

Fig. 1: Implemented MeVisLab network with the Load Data module group (green box), which enables the importation of the CT 

images and the CSO files. The CSOConvertToImage module (orange box) converts the contours into binary images. Finally, the 

generated SaveAsSingleSlices (red box) module enables the automatic exportation of the image slices and the application of data 

augmentation methods. 
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Fig. 2: Various representations created with a View2D modules. No. 1 shows the original CT, No. 2 the CT with an overlaid contour, 

No. 3 the binary mask and No. 4 the CT with the overlaid binary mask. 

 

3. RESULTS 

The number of exportable images relies on the definition of the storage parameters by the user. If the default values 
for transformation and adding noise are applied on a single slice, it is possible to export eleven slices (the original slice 
and ten artificially generated slices). We chose rotation angles of ±8°, and a scale of 1±0.04 in x- and y-direction. The 
amplitude of uniform noise has a value of 800 gray values, the Gaussian noise has a mean value of zero and a standard 
deviation of 300 gray values. The salt-and-pepper amplitudes are set to ±2000 gray values, and the density is set to a 
value of 0.05.  

All settings can be modified depending on the user's intention. Thus, arbitrary training data sets can be produced – 
for the standard parameter setting, we could blow up our 1680 images with a ground truth segmentation to 18,480 
images with corresponding ground truth segmentations. However, it must be kept in mind that the settings should 
produce images that are physiologically meaningful. Since clinical CT data is mostly acquired in supine position, a 
rotation by more than a few degrees is not meaningful for the most tasks [50]. Figure 3 displays an original CT slice and 
two artificially generated images based on the original image. Finally, the code is freely available for download [51]: 

https://github.com/birgitPf/Data_Generation 
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Fig. 3: Examples of exported CT slices in the lower jawbone area. The left image shows the original acquired CT slice of a patient. In 

the middle, is a flipped version of the left image visible. The right CT slice displays an image with added salt-and-pepper noise 

(amplitude ± 2000 and density 0.05). 
 

4. CONCLUSIONS 

In this work, a MeVisLab network and a macro-module have been developed to provide a convenient way to handle 
data preparation and augmentation for the segmentation of the lower jawbones with deep learning networks. The macro-
module provides a convenient interface for tuning the training data set by selecting slices and applying freely 
configurable data augmentation. This approach makes it easy to systematically vary the data set before training. 

The current implemented methods are already suitable for creating augmented data sets to train neural networks for 
automatic segmentation tasks. However, if more data is necessary, it is possible to extend our existing MeVisLab 
module with further functions for data augmentation, such as elastic deformations, shearing or translation. 
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